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Kernel Bundle Diffeomorphic Image Registration
Using Stationary Velocity Fields and

Wendland Basis Functions
Akshay Pai*, Stefan Sommer, Lauge Sørensen, Sune Darkner, Jon Sporring, and Mads Nielsen

Abstract—In this paper, we propose a multi-scale, multi-kernel
shape, compactly supported kernel bundle framework for sta-
tionary velocity field-based image registration (Wendland kernel
bundle stationary velocity field, wKB-SVF). We exploit the pos-
sibility of directly choosing kernels to construct a reproducing
kernel Hilbert space (RKHS) instead of imposing it from a differ-
ential operator. The proposed framework allows us to minimize
computational cost without sacrificing the theoretical foundations
of SVF-based diffeomorphic registration. In order to recover
deformations occurring at different scales, we use compactly
supported Wendland kernels at multiple scales and orders to
parameterize the velocity fields, and the framework allows si-
multaneous optimization over all scales. The performance of
wKB-SVF is extensively compared to the 14 non-rigid registration
algorithms presented in a recent comparison paper. On both
MGH10 and CUMC12 datasets, the accuracy of wKB-SVF is
improved when compared to other registration algorithms. In a
disease-specific application for intra-subject registration, atrophy
scores estimated using the proposed registration scheme separates
the diagnostic groups of Alzheimer's and normal controls better
than the state-of-the-art segmentation technique. Experimental
results show that wKB-SVF is a robust, flexible registration frame-
work that allows theoretically well-founded and computationally
efficient multi-scale representation of deformations and is equally
well-suited for both inter- and intra-subject image registration.
Index Terms—Kernel bundle framework, registration, repro-

ducing kernel hilbert spaces, wendland kernels.

I. INTRODUCTION

I N this paper, we propose a novel parameterization of sta-
tionary velocity fields for diffeomorphic registration using a

class of multi-scale, multi-shape regularizing kernels called the
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Wendland kernels. The proposed registration scheme is termed
wKB-SVF. We propose a framework that incorporates the best
characteristics of state-of-the-art registration schemes: 1) we re-
strict the space of velocity fields to a specific class of func-
tion spaces, reproducing kernel Hilbert spaces (RKHS) [1]–[6];
2) we parameterize the velocity fields using compactly sup-
ported reproducing kernels inherited from the RKHS structure,
and we subsequently represent the high dimensional ODE via a
smaller set of control points and vectors [7], [8]; 3) we provide a
multi-scale representation of the velocity fields using the kernel
bundle framework [9].
In the absence of validated models for inter-/intra-subject

anatomical variability, deformations characterizing anatomical
changes such as, change in organ growth, are generally assumed
to be smooth and invertible. Three popular choices of diffeo-
morphic deformation models are: a) large deformation diffeo-
morphic metric mapping (LDDMM), b) freeform deformations,
and c) stationary velocity fields (SVFs). Among them, a) and c)
naturally generate diffeomorphisms and b) requires explicit reg-
ularization terms to ensure diffeomorphic transformations. For
a discussion about commonly used constraints on deformation
models, see [10].
Each of these methods involve finding an optimal diffeo-

morphism that connects two images. SVFs are less computa-
tionally expensive compared to LDDMM due to the stationary
velocity field assumption. In this study, we will mainly focus
on SVFs together with some key concepts from LDDMM be-
cause SVFs satisfy the dual goal of generating diffeomorphisms
while keeping computational complexity low. A key feature of
LDDMM is that the velocity fields are modeled on a Hilbert
space. This space can be constructed using reproducing ker-
nels, and this approach allows optimal solutions to specific op-
timization problems to be found as linear combinations of the
reproducing kernels. In this paper, we model the stationary ve-
locity fields on a Hilbert space constructed using a class of re-
producing kernels called Wendland kernels. A key property of
Wendland kernels is that they are of compact support. The con-
struction reduces computational complexity because both the
deformation field and the regularization term evaluate to zero
outside the support of the kernel [6]. Existing parametric ver-
sions of SVFs [7], [8] use kernels where the evaluation of the
energy term often requires spatial discretization (bending en-
ergy for instance); Wendland kernels require no such spatial
discretization. In addition, we will use these kernels in a kernel
bundle framework to provide a multi-scale modeling of the de-
formation field. Using the multi-scale feature from the kernel
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Fig. 1. A graphical representation of a 1-DWendland kernel of different scales
and orders. The bundle construction allows the use of kernels of multiple orders
and scales simultaneously. We choose these particular kernels since they emu-
late B-Splines both in terms of the smoothness properties and the shape of the
kernel.

bundle framework allows us to express the combination of var-
ious scales as a simple sum while still remaining in the Hilbert
space.
The main contributions of this paper are as follows:
• We parameterize velocity fields using compactly supported
norm-minimizing kernels, in particular Wendland kernels.
We utilize the benefits of directly choosing reproducing
kernels from the RKHS to parameterize the SVFs. Further,
due to compact support, the regularization term which is a
sum over kernel products, can be efficiently computed.

• We propose a kernel bundle framework where multiple
kernels at different scales are combined to accurately
model the deformation. Although we propose to use
compactly supported kernels only, a combination of both
kernels with infinite support and compactly supported
kernels can also be used.

Fig. 1 illustrates the orders of kernels that, through the bundle
construction, can be used simultaneously in wKB-SVF. In ad-
dition, the proposed framework allows the flexibility to simul-
taneously optimize for scales like in the LDDMM-based kernel
bundle framework [9].
In terms of performance, wKB-SVF provide better overlaps

than the registration methods considered in the study [11] on the
publicly available MGH10 dataset. On the CUMC12 dataset,
the proposed method provides significantly better overlaps than
most of the registration methods, except for SPM-DARTEL
where the difference was insignificant. The framework also
separates diagnostic groups of Alzheimer's disease (AD) and
normal controls (NC) better than the Freesurfer longitudinal
segmentations when used to compute longitudinal atrophy
scores. The results illustrate that the wKB-SVF is well suited
for both inter- and intra-subject registration.

A. Background

In flow-based registration schemes, deformations are gen-
erated by integrating a smooth velocity field over time. Two
prominent flow-based image registration frameworks are the

LDDMM (time-varying ODEs) [2] and SVF (time-constant
ODEs) [12], [13]. In LDDMM, the deformations can be pa-
rameterized by initial velocity fields (or their dual—momenta)
and the resulting diffeomorphism paths are endpoints of the
corresponding Riemannian geodesics. This particular setting is
computationally expensive since it involves solving a geodesic
equation on an infinite dimensional group. An alternative to
LDDMM are the SVFs. Here, the diffeomorphisms are one-pa-
rameter subgroups parameterized by time-constant velocity
fields through the Lie group exponential. The Lie group expo-
nential is realized as a time-integration of the velocity field.
The time-integration is usually approximated using integration
schemes such as Euler's or scaling-and-squaring [12]. The
generated diffeomorphism paths are geodesics with respect to
the canonical Cartan connections [14]. The main drawback
of SVFs is the lack of metric on space of diffeomorphisms
which is important for performing statistics such as PCA [15]
or regression [16]. SVFs were initially proposed by [12] and
were further utilized with modifications in [7], [8], [13], [14],
[17]. Among these, [13], [14], [18], [17] use the entire image
space for dissimilarity minimization. In studies [7], [8], the ve-
locity fields are instead parameterized by interpolating kernels
like B-Splines. A thorough overview of existing registration
schemes can be found in the study [10], [11]. In this paper, we
will restrict our focus to flow-based registration schemes and
specifically to the parameterization of the SVF.
In both SVF and LDDMM, the vector fields belong to a sub-

space of square integrable functions, . The subspace
is generally completed using a Hilbert norm induced by a dif-
ferential operator [19]. With sufficient conditions on the oper-
ator, the space is a RKHS [20]: the Riesz representation theorem
states that every linear form arises as an inner product with the
representer. The representer is the reproducing kernel. A linear
form is an evaluational functional that provides a mapping of
a vector to . In case of finite dimensional optimization prob-
lems, RKHSs allow evaluation of the optimal space in terms of
the reproducing kernel itself: For instance, for an interpolation
problem defined as to find of minimum norm that sat-
isfies , , the solution can be expressed as
the regularized optimization problem (Ref. theorem 9.7 [20]),

. The solution then attains the form,
. Here, is the reproducing kernel. The

whole problem is thus reformulated to a finite dimensional op-
timization problem involving only the vectors .
In contrast to themost common approach, wewill take advan-

tage of the fact that there is flexibility in choosing reproducing
kernels directly as opposed to being imposed by an operator.
This approach allows us to minimize computation through the
use of compactly supported kernels. Alternate options to param-
eterizing velocity fields are by either using B-Splines or trun-
cated Gaussians. The latter is no longer continuous and the eval-
uation of the energy term of the former (like bending energy)
is an approximation since it depends on spatial discretization.
Both B-Splines and truncated Gaussian kernels have negative
Fourier transforms, which mean they are not semi-positive def-
inite kernels and hence are not reproducing kernels. Due to the
aforementioned reasons, they are not considered in this work.
In [22], we have compared the application of Wendland kernels
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versus B-Splines to parameterize velocity field in the context of
brain atrophy estimation.
Wendland kernels [21] (the choice of reproducing kernels in

this paper) emulate B-Splines in both computational complexity
and smoothness. In addition, they also provide the necessary
mathematical properties (smooth, for some , norm-mini-
mizing) to realize a diffeomorphic transformation model. The
role of reproducing kernels and the corresponding regulariza-
tion in the context of LDDMM has been explored in [3], [6],
[9].
1) Multi-Scale Kernel-Based Image Registration: Inter-sub-

ject registration often requires smooth yet large deformations,
whereas intra-subject registration requires deformations at
much smaller scales. For example, anatomical changes in
the hippocampus are often minute and changes in ventricles
(cerebrospinal fluid) may require large deformations. It is
desired that such deformations are recovered using the same
transformation model. The type of the resulting deformation is
restricted by the scale of the parameterizing kernel. Scale, in
this case, can be interpreted as either the support of the kernel
or the spacing between the control points. If the scale of the
kernel is large, then matching of the larger structure may be
good and the transformations smooth. However, the matching
of smaller structures like the hippocampus may not be satis-
factory. On the other hand, if the scale is small, the matching
may be good but the resulting transformation is spiky and may
lead to undesirably large Jacobians [3]. One way to handle such
variability in deformation scales (also to avoid local minima's
in optimization) is via a pyramidal approach, i.e., by changing
the scales of image smoothing or the resolution of the control
points. This approach, however, is still limited by the range of
deformations achievable by the shape and size of the kernel.
The kernel bundle framework handles this by providing a
scale-space representation of the kernels. A very attractive fea-
ture of the kernel bundle framework is that the representation of
the multi-scale kernel is a simple linear combination of kernels
of different support or resolution. Standard parameterizations
of velocity fields like ones using B-Splines require additional
routines such as, knot splitting, to combine various scales of
the velocity field. The idea of exploiting RKHS kernels to build
multi-scale kernel-based diffeomorphic image registration is
not new in the context of LDDMM [3], [9].
However, the application of kernel bundle framework in the

context of SVF-based image registration is novel. Furthermore,
a combination of compactly supported reproducing kernels and
the kernel bundle framework has not been explored in diffeo-
morphic image registration.

B. Outline

We start by describing SVF-based image registration and
presenting the application of RKHSs in the context of SVFs. We
then discuss how computational complexity can be minimized
by representing velocity fields with compactly supported re-
producing kernels. Following this, we discuss the adaptation of
the kernel bundle framework to SVFs together with compactly
supported Wendland kernels. Next follows an evaluation of the
registration performance on the MGH10 and CUMC12 datasets
and an evaluation on the Alzheimer's disease neuroimaging

(ADNI) dataset for atrophy scoring. We end the paper with a
discussion of the results and concluding remarks. This paper is
an extension of our previous work [22]. The key extension is the
multi-scale representation using the kernel bundle framework
and an extended validation of both intra- and inter- subject
registration.

II. REGISTRATION
Given a floating image and a reference image with a

spatial domain , image registration involves finding a
transformation that aligns the images. The
transformation is found by minimizing a dissimilarity measure
between the images under certain constraints encoded in a reg-
ularization term. A general cost function is of the form:

(1)

where are user-specified constants controlling the de-
gree of regularization, is a dissimilarity measure that allows
comparison of the floating image to the reference image, is
a regularization term that encodes the desired properties of ,
and can be included as an additional penalty term to en-
force inverse consistency, see Section II-B. The regularization
term can either be explicitly minimized as, in the parametric ap-
proach, or can be implicitly restricted by convolving with a low
pass filter [13]. The transformation now is restricted to the group
of diffeomorphisms . In flow-based schemes, a time-de-
pendent velocity field is integrated to
obtain a displacement. The governing differential equation is of
the form

where is the displacement and
where is the time interval. The path of diffeomorphisms

is in practice obtained by numerical integration. Solving
the non-time stationary differential equation is generally com-
putationally expensive.

A. Stationary Velocity Fields
With stationary velocity fields (SVF) [14], the velocity field

is constant in time. The paths parameterized by SVFs
are exactly one parameter subgroup of . These paths are
quite different from the Riemannian geodesics in the sense that
the paths are metric-free [14]. Let be the spatial domain of

with as a spatial location. Let be a
subspace containing the diffeomorphic transformations param-
eterized by SVFs, and let be the tangent space of at identity
Id containing the velocity fields . A path of diffeomorphisms
is generated by the stationary flow equation,

(2)

with initial condition . The final transformation
is the Lie group exponential map . This

Lie group exponential can be approximated by Euler integration
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[7]. For example, given steps and , the Euler in-
tegration is

(3)

(4)

(5)

In the study [12], the scaling-and-squaring method to exponen-
tiate velocity fields was proposed. Here, the final deformation
was estimated by composing successive exponentials. However,
a major drawback to this method is that at every squaring step
the velocity fields need to be re-interpolated at integer positions.
This may lead to undesired smoothing (interpolation) in the ve-
locity field over which there is no apparent control. Bossa et al.,
[23] point out the instability in the convergence properties of
scaling-and-squaring. Therefore, we choose the relatively stable
forward Euler's scheme for integrating the velocity fields.

B. Inverse Consistency
In a continuous setting, diffeomorphisms generated by SVFs

are invertible transformations with differentiable inverses.
However, due to the numerical integration of the velocity field,
inverse consistency is not achieved in practice and needs to
be explicitly enforced, typically through a regularization term.
In [24], inverse consistency was enforced by penalizing the
displacement error generated after composing a transformation
with its inverse. However, in this method, the computation
of the inverse is a computationally expensive approximation
[25]. Forward transformations are first computed and then the
inverse transformations are approximated. In this study, we
will maintain a single parameterization of the velocity field.
Both the forward and backward registrations are performed
simultaneously. The inverse consistency term is computed as,

(6)

where and are the
backward and forward registration transformations.

III. REPRODUCING KERNELS AND THE KERNEL
BUNDLE FRAMEWORK

In this section, we present the main contribution of
the paper—multi-scale parametrization of velocity fields
using compactly supported reproducing kernels. Unlike the
parametrization of velocity fields using compactly supported
kernels like B-Splines, Wendland kernels have the reproducing
property that make the norm on these kernels minimizing.

A. Reproducing Kernels From Operators
In SVF-based image registration, the velocity fields , are

chosen to belong to a subspace of absolutely integrable func-
tions in . To complete this subspace, the norm associated with
an appropriate differential operator , ,

is utilized. Usually, is chosen to be a diffusive model
of the form [19] where is a Laplacian oper-
ator. Other choices for the operator exist and discussion of them
can be found in [26].

The operator provides a mapping of the velocity field
from to its dual space .When is admissible [20], the dual
space contains linear evaluational functionals .
The evaluation functionals, that for each provide a map-
ping of the vector space to , can be written as .
According to the Riesz representation theorem, there exists spa-
tially dependent kernels such
that . This implies that

and [20]. Note that denotes the
inner product and denotes evaluation of a functional, i.e.,

where and . We can therefore view
as an inverse of . In fact, the kernel is also a Green's func-

tion with respect to the differential operator . If the operator
is differential, then is positive definite. As a consequence, if

is constructed from a differential operator, then is always
of infinite support [27]. It may be computationally intensive to
evaluate the deformation field and the norm if velocity fields are
parameterized using kernels of infinite support.

B. Compactly Supported Reproducing Kernels
The approach in the previous section essentially involves first

finding a mapping from to , and then constructing kernels
that provide a mapping back to . In this paper, we will use
the significant benefits in taking the reverse approach: instead
of constructing kernels from differential operators which force
the support of the kernels to be infinite, we choose the kernels
directly. This particular arrangement allows the use of kernels
to intentionally minimize computation via the compact support.
Following Moore-Aronszajn theorem [28]: for every sym-

metric positive (semi-) definite kernel exists a unique RKHS
that has as its reproducing kernel. The corresponding RKHS
is the completion of the linear space spanned by the functions
of the form,

for all choices of which is the parameter attached to each
kernel centered at the points . The inner product on this
space provides the reproducing property such that,

(7)

This essentially implies that we can choose an appropriate sym-
metric semi-positive definite kernel with compact support and
this kernel has a unique RKHS associated with it. The Gaussian
kernels are an example of reproducing kernels. However, due its
infinite support, parameterizing velocity fields with Gaussians
in dense image matching may be expensive. Using reproducing
kernels to generate transformations is not new in LDDMM.
Studies usually [3], [6], [9] utilize reproducing kernels such as
Gaussian kernels to parameterize velocity fields.

C. Regularization
A regularization term is required to ensure sufficient smooth-

ness in the solution of the ODE. In flow-based registration
schemes, this term is usually formulated as the squared norm
on the velocity field. Given a reproducing kernel, the evaluation
of the squared norm is simply the kernel product and does not
depend on any spatial discretization like other regularization
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terms such as bending energy of B-Splines. The regularization
term may be evaluated as,

(8)

and by linearity of the inner product and the reproducing prop-
erty associated with the corresponding RKHS (7), the norm on
linear combinations of the kernel can be evaluated by

(9)

Because of this reproducing property, it is often useful to pa-
rameterize the optimal function directly using the these kernels
since optimal solutions are linear combinations of the repro-
ducing kernels of the norm. In the case of infinitely supported
kernels like the Gaussian, the entire double sum needs to be
evaluated, which can be computationally expensive depending
the number of kernels. In contrast, with finite support, the kernel
product is zero outside the support making the evaluation of (9)
efficient.

D. Kernel Bundle Framework
In this section, we will outline the second contribution of this

paper. The contribution involves extending the kernel bundle
concept [9] to compactly supported reproducing kernels and
using it in the SVF framework.
The reasoning behind the need for a multi-scale represen-

tation of a deformation has been well discussed in previous
works such as [3], [9]. In brief, image deformations often occur
at different scales. For instance, in inter-subject registration,
large-scale transformations may be required and in intra-subject
registration relatively small-scaled deformations are required.
For example, the deformations around the hippocampus can be
small, while in regions like cerebrospinal fluid, the deforma-
tion may be larger. The key is to obtain computationally ef-
ficient representations of transformations without limiting the
range and capacity of the deformation. This can be achieved by
combining multiple kernels at multiple scales in the same reg-
istration framework. Typically, in a kernel-based image regis-
tration scheme, the support (or scale) of the kernel is fixed. For
instance, in cubic-spline, the support is fixed to four by design.
The kernel bundle framework in LDDMM [9] incorporates

multiple scales of kernels as a sum in the same optimization
function. We utilize the fact that the sum of multiple RKHS
spaces is still RKHS. We set out to achieve a similar construc-
tion with SVFs. We extend the concept of the space of velocity
fields to a family of spaces of velocity fields . We consider
spaces where each is equipped with a norm ,

. The velocity fields are linear sums of individual
kernels at levels. It is represented as,

(10)

Fig. 2. Kernel bundle framework for SVFs. Different colors represent different
classes of kernels.

Here, is the final velocity field, is the kernel at each
level and is the parameter associated with it. The variable
is the kernel centers at each level and is the number of ker-
nels at each level. Note that ,
where is the support of the kernel at each level. The expres-
sion of the cost function (1) in a kernel bundle framework can
be written as illustrated in the case statement (11).

...

(11)

The kernels at each level can be of any support. For instance,
one can have infinitely supported Gaussian kernels in a coarser
registration scale and have compactly supported kernels handle
finer resolutions in the registration. Fig. 2 illustrates the kernel
bundle framework. Different colors represent different classes
of kernels.

E. Wendland Kernels
In this section, we will describe the compactly supported

Wendland kernel [21] used in parameterizing the velocity
fields. Note that compactly supported reproducing kernels can
also be constructed instead of choosing them directly. We direct
the readers to [6] for one such example.
Wendland kernels were originally developed for multi-di-

mensional, scattered grid interpolation. They are positive
definite functions with positive Fourier transforms and minimal
degree polynomials on [0,1]. They yield ( is the desired
degree of smoothness) smooth radial basis functions on .
Application of Wendland kernels in landmark registration can
be found in [29]. They are defined as follows,

(12)
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where is the smoothness of the kernel, is the euclidean dis-
tance to the center of the kernel scaled by the support, is the
dimension given by and is the integral operator
applied times given as,

(13)

We will utilize two classes of Wendland kernels in the kernel
bundle framework. They are,

(14)

and a plot is shown in Fig. 1. The plot shows both the linear
(green) and smooth Wendland kernels (red and blue). They
all have unit coefficient. Note that (12) refers to the general
family of Wendland kernels. We will however choose only par-
ticular kernels ( , ) since they emulate B-Splines
both in terms of the smoothness properties and the shape of the
kernel.

IV. REGISTRATION COST FUNCTION AND MINIMIZATION

In this paper, we will optimize the kernel bundle framework
in a hierarchical parallel fashion. For instance, on level one, only

is optimized, on level two both is optimized, so on and
so forth. A limited memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) [30] scheme is used for optimization. The optimiza-
tion was done using the min-Func package (see http://www.
di.ens.fr/ mschmidt/Software/minFunc.html, version 2012). For
optimization, we manually supply the derivatives. Normalized
mutual information (NMI) [31] is used as a similarity measure
for both the linear transformation and non-linear transformation.
We initialize the non-linear transformation with a linear trans-
formation with 9 degrees of freedom (DOF). We refer the reader
to [32] for formulations of the linear transformations that we
use. We can write the cost function as (15).

(15)

Note that the forward and backward transformations are repre-
sented as and . The
derivative of the cost function at each level can be derived as
(16).

(16)

(17)

In both (15) and (16), the backward registration is computed
in a similar way however, by replacing by . In (16), is
the intermediate steps of the Euler integral as explained in (3),

is the derivative of the th composition with respect
to the th parameter at th level, is the compo-
sition number ( , total number of Euler compositions),
is the spatial Jacobian of the previous composition, is ,
and is nothing but the kernel evaluation since is
linear in . Furthermore, (16) represents the gradient of the cost
function with respect to the parameters on the th level. Note
that is chosen to be NMI. The flow chart of the registra-
tion algorithm can be found in Algorithm 1. The parameter used
for the registration can be found in Table I. For computational
reasons, only every second voxel was used to evaluate the sim-
ilarity measure. Note that for both inter-subject and intra-sub-
ject registration, the same set of parameters are used. Note that
all the levels are optimized simultaneously, depending on the
level.

Algorithm 1 wKB-SVF Registration Algorithm

1: Affine registration with 12 degree's of freedom.

2: Non-rigid registration

Initialization, ,

3: loop over the number of levels

Smooth both floating and fixed image with a
Gaussian of standard deviation .

Compute velocity field (10).

Compute displacement field .

Compute similarity measure NMI.

Compute the update (16).

V. EXPERIMENTS

In this section, we will present the experiments conducted to
evaluate the performance of the presented registration method
on the paradigms of inter-subject registration and intra-subject
registration. In the first experiment, we will evaluate the per-
formance of inter-subject registration on a publicly available
MGH10 and CUMC12 evaluation dataset [11]. In the second
experiment, we will evaluate the performance of intra-subject
registration on the publicly available Alzheimer's disease
neuroimaging initiative (ADNI) dataset [33] by measuring the
ability to separate the diagnostic groups of Alzheimer's disease
(AD) and normal controls (NC) based on atrophy scores.

A. Inter-Subject Registration
1) Data Description:
• MGH10: 10 subjects were scanned at the MGH/MIT/HMS
Athinoula A. Martinos Center for Biomedical Imaging
using a 3 T Siemens scanner and standard head coil. The
data were inhomogeneity corrected, affine-registered to
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TABLE I
VARIOUS PARAMETERS USED DURING THE REGISTRATION. THE

CONTROL POINT SPACING AND THE IMAGE SMOOTHING ARE STATED
AS A SINGLE NUMBER REPRESENTING ALL THREE DIMENSIONS

ON EACH KERNEL BUNDLE LEVEL

the MNI152 template [34], and segmented using SPM2
software [35]. The images were manually labeled by
Tourville of Boston University using Ghosh's ASAP
software [36]; the labeling protocol [37] is similar to
Cardviews, and in the version used for this study produces
74 labeled regions.

• CUMC12: This dataset consists of 12 subjects that were
scanned at the Columbia University Medical Center and
manually labeled by one technician trained according to
the Cardviews labeling scheme created at the CMA. The
images have 128 labeled regions.

2) Experiments: We performed an evaluation on both the
evaluation dataset similar to [11]. Here, the ability to match a
set of manually segmented regions of interest via pair-wise reg-
istration is evaluated. The parameters used in the registration
can be found in Table I.
Once the registrations are performed, the manually labeled

segmentation from the floating image are warped to the refer-
ence image using a nearest neighbor interpolation. Following
this, the accuracy of the overlap for each anatomical region is
assessed using the following measures [11],

(18)

(19)

where is the source segmentation, is the transformation,
is the target segmentation, TO is the target overlap, UO is the
union overlap and is the index of the anatomical region. Since
these measures were used in the Klein et al., we also use the
same metrics in this article. Furthermore, for assessing the im-
pact of kernel bundle framework, we perform a similar experi-
ment but by just maintaining a single fine layer of SVF (control
point resolution of 4 mm).

B. Evaluation of Intra-Subject Registration

In order to evaluate the registration on intra-subject registra-
tion, we measure atrophy (or volume change) in (Alzheimer's)

TABLE II
BASELINE DEMOGRAPHICS (AGE, GENDER AND

MINI MENTAL STATE EXAMINATION)

TABLE III
MEAN AND STANDARD DEVIATION OF THE OVERLAPS FOR OTHER
SVF-BASED METHODS AND WKB-SVF ON THE MGH10 DATASET

disease-specific brain regions such as whole brain (WB), Hip-
pocampus (Hip), Ventricles (Vent) and Medial Temporal Lobe
(MTL).
1) Atrophy Estimation: Usually, given a deformation field

and an anatomical mask, regional atrophy is estimated by sum-
ming the Jacobian determinant over the region of interest (ROI).
However, for registration schemes where the analytical expres-
sion of the transformation is not available, the Jacobian determi-
nant needs to be approximated using finite differencing schemes
[14]. In this paper, wewill instead utilize Cube Propagation (CP)
to measure atrophy. Here, each face of a cubic voxel is triangu-
lated and the volume under each triangle after transformation
is summed to get the volume of the transformed cube. Tetrahe-
dral meshing is also similar in terms of both numerical precision
and meshing, however with CP one needs to triangulate the sur-
face, which is simpler in terms of bookkeeping of the indices
and computations. A detailed description of CP can be found in
[32].
2) Data: Data used in the preparation of this article were

obtained from the ADNI database (adni.loni.ucla.edu). The
ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit orga-
nizations, as a $60 million, 5-year public private partnership.
The primary goal of ADNI has been to test whether serial
magnetic resonance imaging, positron emission tomography
(PET), other biological markers, together with clinical data
and neuropsychological assessments can be combined to mea-
sure the progression of mild cognitive impairment and early
Alzheimers disease. Determination of sensitive and specific
markers of very early AD progression is intended to aid re-
searchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical
trials, see http://www.adni-info.org/. The description of the
ADNI standardized dataset used here can be found in [33]. We
analyzed baseline and 12-month follow up 1.5 T1 weighted
MRI volumes (169 AD and 101 NC). The demographics of the
subjects can be found in Table II.
The raw DICOM images were preprocessed using

Freesurfer's [38] intensity correction method, following which
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TABLE IV
MEAN AND STANDARD DEVIATION OF THE OVERLAPS FOR OTHER
SVF-BASED METHODS AND WKB-SVF ON THE CUMC12 DATASET

the images were resampled as isotropic voxels with a dimen-
sion of with each voxel of size 1 . Segmentations
used for the quantification of atrophy were also obtained using
Freesurfer (cross-sectional). We add a routine of differential
bias correction [39] to take care of intensity bias due to the
scanners.
3) Metrics for Evaluation: To characterize the performance

of the registration schemes, we record the mean and standard
deviation of atrophy in the diagnostic groups as well as com-
pute the diagnostic capability in terms of effect size measured
as the Cohen's D and the area under the receiver operator char-
acteristic curve (AUC). Cohen's D—disease-specific effect size
is computed as,

'

where and are the means and standard deviations
of NC and AD subjects respectively. Power analysis is used to
estimate the sample size required to detect a 25% reduction of
mean atrophy in the AD group, using a two-sided test and a
significance level of 0.05 [40]. The sample size is computed as
follows,

(20)

where is the group standard deviation in atrophy, is the
quantile of a normal distribution at and power of
80% and is the mean atrophy across the subjects involved in
the study. The 95% confidence interval for the sample size was
computed based on bootstrap resampling with 10,000 samples,
with a bias corrected and accelerated percentile method [40],
[41]. To compute the p-value for the pairwise method compar-
ison, we carried out a two-tailed t-test for the null hypothesis
of equal measures , where and are inde-
pendent random measures. We compute a probability distribu-
tion for the difference between the Cohen's D for the two mea-
sures and compute p as and

[42]. The p-values for comparing
the AUCs were computed using the DeLong test [43]. Note that
in this study we presented numbers based on the full data set.

VI. RESULTS

A. Inter-Subject Registration
The resulting overlaps on the MGH10 and CUMC12 are

freely available to compare against.1 The significance between
methods was computed using a two-sample t-test. On MGH10,
all the 14 registration algorithms have significantly lower

1www.mindboggle.info

Fig. 3. Box plot of target overlaps of other registration schemes. Yellow: Sig-
nificantly lower overlaps than single layer Wendland SVF. Green: Significantly
higher overlaps than single layer Wendland SVF.

Fig. 4. Box plot of union overlaps of other registration schemes in comparison
to single layer SVF andWendland kernels. Yellow: Significantly lower overlaps
than Wendland based method. Green: Significantly higher overlaps than single
layer Wendland SVF.

overlaps (although FLIRT is only linear). The mean target
overlap of wKB-SVF on the MGH10 dataset was 0.5844 when
compared to 0.5431 of SPM-DARTEL, 0.5228 of Demons,
0.5683 of SyN, 0.5611 of ART and 0.5490 of IRTK. Similarly,
the mean union overlap of wKB-SVF was 0.4134 when com-
pared to 0.3654 of SPM-DARTEL, 0.3497 of Demons, 0.3946
of SyN and 0.3793 of IRTK. Figs. 5 and 6 present the target
and overlaps evaluated on the MGH10 dataset. On CUMC12
dataset, wKB-SVF had a mean target overlap of 0.5203 when
compared to 0.5216 of SPM-DARTEL, 0.4632 of Demons,
0.5138 of SyN, and 0.5150 of IRTK. Similarly, the mean union
overlap of wKB-SVF was 0.3557 when compared to 0.3571 of
SPM-DARTEL, 0.3054 of Demons, 0.3519 of SyN and 0.3542
of IRTK. Figs. 7 and 8 present the target and overlaps evaluated
on the CUMC12 dataset. Figs. 3 and 4 illustrate the overlaps
when the kernel bundle layer is replaced by a single layer of
Wendland SVF.

B. Intra-Subject Registration

Table V presents the mean and standard deviation of the at-
rophy measured over whole brain (WB), hippocampus (Hip),
ventricles (Vent) and medial temporal lobe (MTL) using the
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Fig. 5. Box plot of target overlaps of other registration schemes compared to
wKB-SVF on the MGH10 dataset. Yellow: Significantly lower overlaps than
wKB-SVF.

Fig. 6. Box plot of union overlaps of other registration schemes compared to
wKB-SVF on the MGH10. Yellow: Significantly lower overlaps than wKB-
SVF.

Fig. 7. Box plot of target overlaps of other registration schemes compared to
wKB-SVF on the CUMC12 dataset. Yellow: Significantly lower overlaps than
wKB-SVF.

volume change maps from Wendland kernel bundle registra-
tion and the longitudinal version of Freesurfer. The Cohen's
D, Sample Size and AUCs are generally on the higher side for
wKB-SVF measures. It is interesting to note that the mean atro-
phies for wKB-SVF method are on the lower side of Freesurfer.
However, due to smaller standard deviations, the signal-to-noise
ratio for the disease is still significant. The annual mean atrophy

Fig. 8. Box plot of union overlaps of other registration schemes compared to
wKB-SVF on the CUMC12. Yellow: Significantly lower overlaps than wKB-
SVF.

rate in the hippocampus is measured to be approximately 3%
which is consistent with what was reported in a previous study
[44]. As a consequence of atrophy in WB and other structures,
we observe an expansion in the ventricles of 9%. Sample size
is not adjusted with NC and is disease-specific only. However,
the effect size after accounting for controls is reflected in the
Cohen's D scores. The ventricles are clearly demarcated struc-
tures in the brain and hence both segmentation and registra-
tion of this structure is relatively easier. This is also reflected
in our observation. Both Cohen's D and sample size for both the
methods are quite similar. A head-to-head comparison showed
that the wKB-SVF scores on the hippocampus and WB were
significantly better than the respective Freesurfer longitudinal
scores.

VII. DISCUSSION

In this paper, we presented a novel approach to non-rigid
registration using SVFs by parameterizing velocity fields using
compactly supported reproducing kernels. Furthermore, we
proposed a multi-scale representation of the deformations by
using the kernel bundle framework. We evaluated the inter-sub-
ject registration performance of the framework on the publicly
available MGH10 and CUMC12 datasets. wKB-SVF had better
target and union overlaps than the 14 registration methods on
the MGH10 dataset. On the CUMC12 dataset, wKB-SVF had
higher overlaps compared to most of the registration methods
apart from SyN, ITK and SPM-DARTEL where the difference
was insignificant. The performance in intra-subject registration
was evaluated by estimating the diagnostic group separation
capabilities of both longitudinal Freesurfer and wKB-SVF
framework. It was shown that wKB-SVF separates AD from
NC better than Freesurfer. Both Cohen's D and sample size
were significantly better for wKB-SVF. To assess the impact of
the optimization scheme, we switched to only using sequential
optimization on the MGH10 dataset and obtained lower target
(0.5431) and union overlaps (0.3896) indicating the positive
impact of the parallel scheme. In terms of computational time,
the proposed method runs a full registration in 180 mins (single
core, 2.5 Ghz Xeon processor). This is comparable and in
a few cases faster than registration schemes like ANTs and
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TABLE V
STATISTICS BASED ON ATROPHY ESTIMATED IN DIFFERENT BRAIN STRUCTURES USING THE PROPOSED KERNEL BUNDLE FRAMEWORK
AND LONGITUDINAL FREESURFER, WB: WHOLE BRAIN, HIP: HIPPOCAMPUS, VENT: VENTRICLES, MTL: MEDIAL TEMPORAL LOBE,

MEAN AND STANDARD DEVIATION ARE ATROPHY IN PERCENT

IRTK. Demons runtime is lower than the presented registration
scheme, however at the cost of lower segmentation overlaps.
For more accurate registrations, a higher number of kernel
bundle scales can be used however at a higher computational
cost.
When differential operators are used to construct an RKHS,

the associated reproducing kernel is of infinite support. In [45],
a similar approach as in [2] was used to solve the differential
equation with the space of velocity fields constructed using a
Laplacian-like differential operator. Instead of parameterizing
the velocity fields with , the authors directly compute the dis-
cretized version , being the vector field and the differ-
ential operator, in the Fourier domain. For Laplacian-like op-
erators, it was shown that for certain cases the inverse of the
operator equals a Gaussian kernel and, for most other cases, the
Gaussian kernel is a good approximation [46]–[48]. This ob-
servation forms the basis for the Demons framework. In order
to make the registration computationally efficient, a smoothing
of the velocity field update is performed during optimization.
There is a theoretical equivalence of the smoothing procedure
to a gradient descent [49], [50].
The kernel provides a mapping from to that is equiva-

lent to the mapping that results from the inverse of a differential
operator. Classical operators like Laplacian give rise to kernels
that resemble Gaussians. The native spaces ofWendland kernels
are norm-equivalent to a Sobolev space of a particular order de-
pending on the kernel chosen. The regularization effect of the
norm on Wendland kernels has an equivalent effect to that of
norms induced by Sobolev operators. For instance, (14)
has a norm-equivalence to a Sobolev space . The order usu-
ally represents the differentiability of the operator. Equivalence
of smoothness of the spatial transformation follows from this.
The inverse consistency regularization is due to the numerics in-
volved in the integration scheme. Taking the term into account
reduces the inverse consistency error; for instance, the mean
error was 1.5 mm when the inverse consistency regularization
was turned off and 0.1 mm when the inverse consistency term
was included.
We also extended the concept of the kernel bundle framework

to SVFs and compactly supported kernels. Multi-scale represen-
tation of kernels has been previously explored in the context of
LDDMM [3], [9] and freeform deformation [51]. The founda-
tions of the sum of kernels approach is well established [3], [4].
Instead of using a single diffeomorphism group for image reg-
istration, a combination of several subgroups via a semi-direct
product can be utilized. Each subgroup can parameterized by

a kernel with its own characteristic shape and scale. This fact
was extensively exploited by [3], [9]. In both [3], [9], a sum
of Gaussian kernels with varying scales was used. Similar to
the latter, it is possible to add an prior (similar to [9], [51])
to the wKB-SVF framework, adding to its flexibility. In fact, a
varying combination of kernel scale and resolution of the con-
trol points is incorporated in the proposed registration frame-
work. Also, the compactly supported kernel bundle framework
can be adapted to LDDMM, thereby enabling computationally
efficient integration of the LDDMM flow equations.
Another possible extension to wKB-SVF will be to utilize the

full multi-grid methods [7], [52] for registration optimization.
It is interesting to note that, if one uses the current standard
B-Splines multi-grid approach, an additional routine like knot
splitting needs to be included to project the coarser resolution
of control points onto a finer one. Since we utilize the additive
nature of the vector spaces, such an additional routine is not re-
quired. Since both the approaches (standard coarse-to-fine ap-
proach and kernel bundle) have redundant information across
scales, it will be interesting to check the influence of having
orthogonality between the scales. By choosing basis functions
as appropriate wavelets [53], one may introduce orthogonality
with respect to the inner product between scales and also avail a
multi-scale feature. It will be interesting to compare the perfor-
mance of such a representation with the kernel bundle frame-
work. It has to be noted that when using wavelets, the velocity
fields need to be defined on a regular grid.
A very important caveat in the comparison is the similarity

measure used. The presented framework used mutual informa-
tion whereas demons used sum-of-square differences and SPM-
DARTEL uses congealing. In the experiments performed, we
illustrated the positive impact of multi-scale representation of
the velocity field. The degree of impact of the similarity mea-
sure used remains uncertain to some extent. Therefore, it is per-
tinent that a comparison of transformation models needs to be
performed by using the same similarity measure. Another as-
pect of the presented image registration framework is that the
parameters of the registration were not optimized. Most impor-
tantly, we use the same set of parameters for both inter- and
intra-subject registration. Usually, a different set of registration
parameters are used for inter-subject and intra-subject image
registration. It will interesting to evaluate the robustness of the
results of wKB-SVF under varying parameters. Another aspect
that needs to be determined is the practical impact of Wendland
kernels versus compactly supported kernels such as B-Splines
or truncated Gaussian in the kernel bundle framework.
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VIII. CONCLUSIONS

The nonlinear registration method, wKB-SVF, presented in
the paper encapsulates the benefits from existing state-of-the-art
methods. The method exploits the benefits of flow-based regis-
tration methods through the use of RKHS and SVFs. We incor-
porate computational efficiency through the utility of compactly
supported kernels and, finally, we represent the deformation
through a multi-scale kernel bundle framework. The method al-
lows us to model precisely both inter- and intra-subject registra-
tion at several scales that are compactly represented by repro-
ducing kernels. We demonstrated the efficiency of this method
by showing that it performs better than the state-of-the-art SVF
methods on a publicly available dataset on inter-subject regis-
tration. On intra-subject registration, we show that the atrophy
estimated is on par or better than a state-of-the-art segmentation
method—longitudinal Freesurfer.
In addition to the presented experiment, we expect that

the kernel bundle framework in tandem with SVFs will be
particularly powerful when applied to population analysis.
For instance, the presented method can be efficiently used in
estimating diffeomorphic spatio-temporal atlases for human
anatomy.
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